If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2-8b-1=0
a = 8; b = -8; c = -1;
Δ = b2-4ac
Δ = -82-4·8·(-1)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{6}}{2*8}=\frac{8-4\sqrt{6}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{6}}{2*8}=\frac{8+4\sqrt{6}}{16} $
| 49x+94=49x+39 | | 25x+36=92+24x | | 14x-7+16x-5=14x+68 | | 3(14-52x)=4(1-x) | | 1/4y+8=-1/2y-7 | | 5x+6+4x+10=34 | | -0.5x-3.69=-4.29 | | 16=2f+10 | | 2x+8=2(x+2 | | 10=-1+x | | 12b+11=155 | | 4(5n-2.5)+1.6=91.6 | | 2=4p-18 | | 5(r)=25-r | | f(-3)=12(-3) | | 5x-13=-33 | | 4x-56=64 | | 1+9x=180 | | -5x4=-44 | | 2.25x+4.75=181 | | Y=-x+4+2 | | -4(x-5)+8(4x+3)24=72 | | 11x×9= | | p-7=-7 | | 0.5x=2x+6 | | 34=6x4(4x+14) | | 8x^2-20=63x | | 6-17w=-15+14w | | F(x)=12x+-7x=3 | | -3(2x+8)=4(-2x+5) | | -9-8x=-2(+4x) | | 3x=374 |